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A UNIFIED FORM OF LAMBERT’'S THEOREM

by
E. R. Lancaster and R. C. Blanchard
Goddard Space Flight Center

INTRODUCTION

Lambert's problem, as it arises in most applications, is concerned with the determination of
an orbit from two position vectors and the time of flight. It has important applications in the areas
of rendezvous, targeting, and preliminary orbit determination. In this paper a unified form of
Lambert's theorem will be presented which is valid for elliptic, hyperbolic, and parabolic orbits.

The key idea involves the selection of an independent variable x and a parameter g such that
the normalized time of flight T is a single-valued function of x for each value of q. The parameter
q depends only upon known quantities. The problem then is to find x for given values of q and the
time of flight. For less than one revolution, T is a monotonic function of x for each value of q. Thus
it is an easy task to design an algorithm for finding x. For multirevolution cases, T(x) has a single
minimum for each q.

This idea was presented in a previous paper (Reference 1), where a unified formula was given
for the computation of T from x and q. Detailed sketches were given for T(x, q), and a simple
formula developed for the time derivative of the magnitude of the radius vector at the initial time
in terms of x and given quantities.

The present paper expands upon the previous one by:

1. giving complete derivations which were only sketched before;

2. giving a careful derivation of the classical form of Lambert's equations, including the
multirevolution cases;

3. deriving a number of useful auxiliary formulas, e.g., for the semilatus rectum and for the
velocity vectors at the initial and final times.

THE PROBLEM

Suppose a particle in a gravitational inverse-square central force field has distances r, and
r, from the center of atiraction at times t, and t,. Let ¢ be the distance and ¢ the central angle
between the positions of the particle at the two times, where 0 < 9 < 27,



Lambert's problem is that of finding the semimajor axis or some related quantity for the orbit
of the particle, given t,, r,, t,, r,, and¢. When Lambert's problem has been solved, other quanti-
ties associated with the orbit are easily found, as will be later discussed. Using the law of cosines,
we can express ¢ in terms of r,, r,, and 9:

2 = 2 2 _
tor) 2r, r, cos e . (1)

We define

G = universal gravitational constant,
M = mass of attracting body,

u = GM,

a = semimajor axis of transfer orbit,

e = eccentricity of transfer orbit.

We will follow the common sign convention for a, i,e., a> 0 for elliptic orbits and a < 0 for
hyperbolic orbits.

Definitions of other symbols will be given as they are introduced.

THE CLASSICAL FORM OF LAMBERT'S EQUATIONS

The path of a particle in an inverse-square central force field is an ellipse, parabola, or
hyperbola. With origin at the center of attraction, we have, for elliptic motion,

e, = a(l-ecosa,) . 2)

r, = a(l-ecosd,) . . 3)
n{t,;~t,) = ¢ - esing, , 4)
n(t,=t)) = ¢, - esin¢, , 6)

where ¢, and ¢, are the eccentric anomalies at times t, and t,, t_  is the time at pericenter, and

n = (M/aB)l/Z'




If ¢, is a unit vector pointing towards periapsis and €, is a unit vector in the plane of motion
90° ahead of €, in the direction of motion, then for the position vectors 7, and r, at timés t, and t,

o]
|

1 a(cos¢1—e)€l + a(l—e2)l/2 (sin¢l)?2 ,
?2 = a(cosd)z“e)_s'l + a(l-e"’)"/2 (sinqbz)E'2 .
Substituting these equations in

2 = 2 2 o 9y . 7
c ry +r2 2:‘l Ty

where the dot indicates scalar product, we have
c = a? (cosq.'>2--cos¢>1)2 + a? (1—532)(sinqb:,-singbl)2

1 1
= 4a? [1 - e?cos? 7 (¢, +¢2)] sin® 7 (‘7)2_‘751) . (6)
Adding Equations 2 and 3,

r, tr, = Za[l—ecos%(qbl+¢2)cos%‘((ﬁz-qbl)] . 7
Subtracting Equation 4 from Equation 5,
n(t,-t,) = &, -~ ¢, - 2ecos —12— (#, + #,)sin % (6,-,) - (8)
Equations 6, 7, and 8 determine the three unknowns a, ¢, - ,, and e cos (1/2) (¢, * ¢,). Let

1
cos 3 (atB) = ecos‘;‘(qblw‘dng), 0La+ B8< 21, (9)

a -8 = ¢, - b, - 2w, 0<a=-p<2m, (10)

where m is the number of complete circuits made by the particle between times t; and ¢t,.

Equations 6, 7, and 8 become

1 1
c/2a = sin-f(a+,3)sin'2'(‘1_ﬁ) ’ (ll)

I



1 1
(r1+r2)/23 = 1 -cosg(atB)cosgz (a=pB) ., (12)
1 1
n(tz-tl) = 2 ta-fB-2cos 5(atf)sing (a-f) . (13)

The two inequalities for Equations 9 and 10 are

p geometrically equivalent to the shaded region of
o, '2“) 0 Figure 1, from which it is evident that 0 <a < 2
O,Qe . and -7 <8 <n. We can also obtain 0 < « < 27 by adding
s the inequalities for Equations 9 and 10; and, if we
C{Qa add 8-« to each part of the inequality for Equation 9

and divide the result by 2, we obtain - (a - 8)/2<8<m
: +(a=-B)/2,0r -—mSB<m,
©, 9 R (2r, 0) - With appropriate trigonometric identities, Equa-
X tions 11 and 12 become

oS cosfB ~ cosa = c/a,

cos 5 + cosa * 2 - (r1+r2)/a .

N

Q
>

(0, -2n) o Solving these two equations,

cosa - 1 -s/a = 1+ 2E , (14)

Figure 1. cosf = 1+ 2KE , (15)

where we have defined
s 7 (rptr,tc)2.
E = - s/2a,
K = 1-c/s.
Since cosa = 1-2sin?(a/2), Equation 14 can be changed to
E = - sin?(a/2), 0%a<2y. (16)
" Similarly, Equation 15 becomes

KE = - sin?(8/2) , TS BT, (17)

K = (s-¢c)s = (r1+r2—c)/25



Introducing Equation 1, we have
K = (r;r,/2s?) (1 +cos 6)
= (r, r,/s?)cos?(6/2) .
Substituting Equation 16 in Equation 17,

sin (8/2) = qgsin(a/2) , -7 <B8<7, : T

where
a = £ = [(ryry)v2/6]cos /2 a9

Note that the sign of q is taken care of by the angle 4:

12920 if 0<8<q
02q2-1 if m <6< .
We can introduce E into Equation 13, since
n(t,-t,) = (w/a)V2(t,-t,) = (-E)¥2T,
where
T = (8u/s)V? (¢, -tl)/s . (20)
T = (-E) %2 [2m77+a -B8-2cos % (at B)sin % (a—/ii)] . (21)
This can also be written as
T = (-E)y ¥? [2m77+a—5—(sina-—sin/5)] . (22)
Substituting Equation 16 into Equation 22,
Tsin3(a/2) = 2mr +a - B~ sina + sinB . , (23)



Egnations 18 and 23 with 0 £ o < 27 are Lambert's equations for elliptic motion. Given T and
q, they are to be salved for « and B, after which it is a simple matter to find all other quantities
associated with the orbit,

It is customary in the literature (e.g., Reference 2) to consider T as a function of E (or a) and
break the elliptic case of Lambert's theorem into four cases, depending upon the sign of q and
whether «/2 is taken in the first or second quadrant in Equation 16. The choice of E as the inde-
pendent variable makes T a double-valued function. This problem can be avoided by choosing o as
the independent variable, However, an even better choice will be discussed in the next section.

By a derivation very similar to that for the elliptic case, one finds for the hyperbolic case

T = -E¥2[y-8-(sinhy-sinhd)] , (24)
E = sinh?(%/2) , (25)
sinh (8/2) = qsinh (7/2) . (26)

When m = 0, Equations 22 and 24 break down for E = 0 and suffer from a critical loss of sig-
nificant digifs in the neighborhood of E = 0. To remedy this, Equation 22 is written in the form

T = o(-E) - ako(-KE) , 27
where
o(u) = 2[.’;\rcsinul/2—ul/:"(l-~u)1/2]/u3/2 .

Replacing arcsin u¥? and (1 -u)'? by series (Reference 3) with 0<a < 7,

fe2)

o(u) = 4/3+Zanu" R lu] <1,

n=1
a = 13+ 5:2(2n-1)/27"2(2n + 3)n!

n

A similar procedure produces the same series for the hyperbolic case. For the parabolic case
we have E = 0, in which case the series gives

T = (43)(1-4%).

Thus with m = 0 we have a series which is valid for elliptic, hyperbolic, and parabolic transfer
provided |E| <1 (with 0< a < = for the elliptic case),

6



A UNIFIED FORM OF LAMBERT’S EQUATIONS

As mentioned in the previous section, T is a single-valued function of . However, a better-
behaved function is obtained if we choose as the independent variable

»
i

cos (a/2) , -12x=21,

cosh (y/2) , x> 1.

We then have, for elliptic, hyperbolic, and parabolic transfer,

E = x?-1
if for parabolic transfer, we let x = 1,
For the elliptic case, let
y = sin(a/2) = (-E)V? ,
z = cos(B/2) = (l+KE)V? ,
o1
f = sing(a-8) = y(z-agx) ,
1
g = cosz3(a-B) = xz - qE,
—_ 1 . . —
h = 5 (sina-sing) = y(x=-qz) ,
A = arctan (f/g) , 0 <X <7,

It then follows from Equation 21 for the elliptic case that
T = 2(mr+A-h)/y> .
For the hyperbolic case, let

sinh (y/2) = EV?2 |

«
!

cosh (7/2) = (1+KE)V? ,

N
1



1
f = sichm (y-38) = y(z-ax),
— 1 -
g = cosh3(y-8) = =xz - qE.
Note that 0y -8 < @ gince 0< f<®, Let
N . -
h = j(smhy—mnhS) = y(x-qgz) .

It follows that
1 .
3 (y-8) = arctanh (f/g) ,

1
= gin [(fre)/(e-D)] .

- 7 in [+ o)/ (e2- i2)]

= 4n (f tg) .
Thus, for the hyperbolic case,
T = 2[h—£n(f+g)]/y3 .

It is now apparent that, given q and x, the following steps produce T for all cases:
1. K = q2
2. E = x*-1

3. If x is near 1, compute T from Equation 27

4, y = [E[1/2
5. z = (1+KE)V?
6, f = y(z-agx)

7. ¢ = xz - gk




i}

8. HE<O, r
IftE>0, d

arctan (f/g), d =mm+A, 0ZA<T
An (f+g)

9. T = 2(x-qz-d/y)/E.

The following formula for the derivative holds for all cases except for x = 0 withK = 1, and
for x = 1:

dT/dx = (4 -4gKx/z - 3xT)/E .

If x is near 1, differentiate Equation 27 to obtain

dT/dx = 2x[ak’*o’ (-KE) ~o' (-B)] ,

©

o' (u) = do/du = ? nanu“'l .

n=1

The derivative in the case of x = 0 with k = 1 will be discussed in the next section.

AUXILIARY FORMULAS

In this section we will show how to obtain a number of useful quantities associated with the
two-body orbit, assuming Lambert's problem has been solved for x.

In the derivation of Lambert's equation for the elliptic case, » and & are defined in such a way
that

b, — by T oa - 3 F 2w 2 ANt .
From Equation 22, the eccentric anomaly difference can also be written in the form
¢, ~ ¢, = (-EY¥?T + sina - sinf
= y3T + 2y(x-qz) . (28)
From Equation 28 we have

sin(¢,~¢;) = 2y(z-ax)(xz- k)

= 2y(x-qz) + 4y3q(z-ax) ,



®, = b, - sin (¢, ~ ;) y3T - 4ydq(z-gx) , (29)

1 - cos (¢2—¢1) 2y2 (2 -qgx)? . . (30)

We now obtain a formula for the time derivative r at time t,. Kepler's equation in the elliptic
case can be written in the form (Reference 4)

(w/a%)¥2 (t,7ty) = @~ * 1,0y [1 T cos (‘752_4)1):!/(“3)1/2 - (1- rl/a) sin (6, -¢,) -
Substituting 1/2 = 2y?/s, t,-t; = s¥27/(8)"? , and making use of Equations 29 and 30 gives
(2/us)V2(z=ax) ry f; = 2q = (2r,/s)(xz-qE) .

Multiplying through by z +qx, we have, since (z-ax)(z*qx) = 1-K = ¢/s and (z*qgx) (xz~ qE)

= xtaz,
(2/;Ls*.)1/2cr1i~1 = 2gs(z*agx) - 2r, (x%qz)

= 2qz(s—rl) + 2x(Ks—r1) ;

Ks - r, = (l-c/s)s—-r, = s-c-r, = r,~s.
Thus we have finally that
P <z,,ts>1/2[qz(s-r‘)—,<(s-r2)]/cr1 . 1)
At time t, we find
P, = <2,Ls>m[x(s—rl)—qz(s—rQ)]/ch . (32)

By a similar procedure we can show that Equations 31 and 32 hold also for the hyperbolic and
parabolic cases.

Having x, we can find the semimajor axis a, or its reciprocal,

1/a = 2y%/s .

10



We know that

ecos¢p = 1 - r/a,
esing = rr/(ua)¥? ,

where r is the magnitude of the position vector, and ¢ is the eccentric anomaly, at time t,

Thus for the eccentricity we have

e? = (1-r/a)? + (rr)*/ua .

For the semilatus rectum p we have

p = a(l“ez) = 2r-r2/a—(r1:)2/;t.

and for the value of r at the point of closest approach to the center of attraction we have

For the speed we have

For the component of velocity perpendicular to a radius vector,
P = (p.p)llz/r .

The above formulas hold for any type of two-body motion, Either of the subscripts 1 or 2 can
be placed on r, r, and v.

Ifr,<O0and 1,>0,or if ¢, and r, have the same sign with 6 > », periapsis passage will occur
between times t, and t,, in which case it may be of interest to compute r .

If the plane of motion is known, the velocity v at either time t, or time t, can be written in
any convenient coordinate system, since the components r and v, are known., The plane of motion
can be found from the position vectors ¥, and 7, at times t, and t,, provided they are not parallel.
Since this is a common case, we will express v, and ¥, (the velocities at t, and t,) in terms of T,
and 7,.

11



For the velocity v, we have

- —
v =

1

-
v

+v61 ,

where v , is along ¥, and V,, is in the plane of motion perpendicular to r, and in the direction of
motion, i.e., in the direction of increasing true anomaly, We have

Vo T ¢
where c, and c, are to be determined.
r, Vg; T 0 = L T
T, " Vg, T, Vg, sinf

12

-
v

3104 Circuits
o (m=3) 7

=0

2103 Circuils
e oy o

Les;\fﬁanwgircui,
(m=0) "—-g¢:Q

“1 -0.8-0.6-0.4 -0.2 0 0.2 0.4 0.6 0.8

1

rr (fl/Ql) Ty

. -
CaTy
N - ~
Cp Ty Ty
5 o
= + 2
1T Ty T €1y

Since r, T, = r, r,cos 6, we have
(rl cos,@)c1 try,c, T vgsind
Solving for c, and c,, we have

\71 = (il - v, cot 9)(?1/1'1)4- (V91 csc@)(?2/r2) .

In a similar way, we find

<l

2 = ~{ve, csc 9)(?1/41)1‘(52'+V92 cot 6)(?2/42)

Figure 2 shows T as a function of x. Note
the discontinuity in the slope for x = 0 with
K=1 ForkK =1, z = |[x|]. Thus we are led
to consider four cases: q = +1 with x> 0,

g = +£1 with x £ 0, Examination of the formulas

for dT/dx in these cases reveals that if g = 1
we have a left-hand derivative of -8 and a right-
hand derivative of Oat x = 0. If g = -1 we
have a left-hand derivative of 0 and a right-
hand derivative of -8 at x = 0,



j
|}

With further analysis we find that the cases (@ = 1, x < 0) and (g = -1, x 2 0) represent recti-
linear orbits.

For m = 0, T is a monotone function of x, making possible a simple numerical procedure for
solving Lambert's problem. Figure 2 is for the elliptic case, Figure 3 for the hyperbolic case,
the parabolic case occurring at x = 1 in both figures. Figure 4 shows a small region of Figure 2

Figure 3.

where d? T/dx? is negative. If the Newton- 7.0
Raphson method is being used to find x, a

switch should be made in this region to the se- 6.5 q=-0.9999
cant (regula falsi) method,
6.0
No solutions of Lambert's problem exist — .
in the shaded regions of Figures 2 and 3. 5:51" - SN
x =1 (m>0) and x = -1 are vertical asymp- . X
5.0 INFLECTION PT. T ™ 'S
totes. T-0as x-x, -0.98 CURVE - Ny
| -0.97 ’ .
4.5 I i | ! | ! )
Goddard Space Flight Center -0.20 -0.15 ~0.10 -0.05 0 0.05 0.10 0.15 0.20
National Aeronautics and Space Administration X
Greenbelt, Maryland, May 28, 1969
188-48-01-05-51 Figure 4.
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